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14.0 What We Need to Know When We Finish This Chapter

The addition of a second explanatory variable in chapter 11 adds only four
new things to what there is to know about regression. First, regression uses
only the parts of each variable that are unrelated to all of the other variables.
Second, omitting a variable from the sample relationship that appears in the
population relationship almost surely biases our estimates. Third, including
an irrelevant variable does not bias estimates but reduces their precision.
Fourth, the number of interesting joint tests increases with the number of
slopes. All four remain valid when we add additional explanatory variables.
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1. Equations (14.11), (14.1), and (14.2), section 14.2: The general form
of the multivariate population relationship is

k
v, :a+Zleh+£[.
=1

The corresponding sample relationship is
k

v = a+2blxh. +e,.
=1

The predicted value of y; is

k
V= a+2blxh.
=1

2. Equations (14.3) and (14.4), section 14.2: When we minimize the
sum of squared errors in the multivariate regression, the errors sum to
zZero,

n

0=) e,

1

i=1
and are uncorrelated in the sample with all explanatory variables
0 =Ze[xpi = COV(ei, xp[) forallp=1,...,k.

i=1

3. Equations (14.5) and (14.8), section 14.2: The intercept in the
multivariate regression is

The slopes are

n

Z(e(xp,xl ...xp?lxpﬂ...xk)i - e(xp,xl...xpflx”“.,.xk))(e(y,x]...xﬂ?lxml Xy )i - e(y,xl ...xpilxpﬂ...xk)
b = i=1 .

P n 2
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4. Equations (14.9) and (14.17), section 14.2: R? is
R*=COV(y,5,).
The adjusted R? is

szt).

5. Section 14.2: Regression is not limited to two explanatory variables.
However, the number of observations must exceed the number of esti-
mators, and each explanatory variable must have some part that is not
related to all of the other explanatory variables in order to calculate
meaningful regression estimators.

6. Equations (14.12) and (14.14), section 14.2: If the regression is
specified correctly, estimators are unbiased:

adjusted R* =1—

E(a)=a and E(bp):ﬁp forallp=1,..., k.

If the regression omits explanatory variables, estimators are biased:

n
k zle(xp,xl...xplxpﬂ...xkql)ie(xm,xlu.xﬂlxpﬂ...xkql)i
— i=
E(bp)_ﬁp+ Z B, n :

m=k—q

2
. e(xp,xl4..xp7]xp+]4.4xkiq7])i
i=1
7. Equations (14.16), (14.19), and (14.20), section 14.3: The estimator
of 62 is

With this estimator, the standardized value of b, is a # random variable
with n — k — 1 degrees of freedom:

b,=B, < k)

¢ |

n
2
e .
(xp SXpe X XX )l
i=1
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If n is sufficiently large, this can be approximated as a standard nor-
mal random variable. If the sample regression is correctly specified, b,
is the best linear unbiased (BLU) estimator of 3,.

. Equations (14.21) and (14.22), section 14.3: The general form of the
test between an unrestricted alternative hypothesis and a null hypoth-
esis subject to j restrictions is

bRl

J

~F(j,n—k-1).

N\
T =
0
TN
N——
=

For the null hypothesis that all coefficients are equal to zero, this
reduces to

R, n—k-1

2
1-R, &

~F(k,n—k—1).

. Equation (14.26), section 14.3: The Chow test for differences in
regimes is

n n n
Yol ||3e| +[3e

1 1 1
=l Jp =t Jo—o =l koo

k-1

~F(k-1, n—2k).
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10. Section 14.6: If omitted explanatory variables are fixed for each entity
in the sample, multiple observations on each entity may allow us to
use panel data estimation techniques. These techniques can purge the
effects of unobserved heterogeneity and yield unbiased estimators for
the effects of included explanatory variables.
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