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14.0  What We Need to Know When We Finish This Chapter

The addition of a second explanatory variable in chapter 11 adds only four 
new things to what there is to know about regression. First, regression uses 
only the parts of each variable that are unrelated to all of the other variables. 
Second, omitting a variable from the sample relationship that appears in the 
population relationship almost surely biases our estimates. Third, including 
an irrelevant variable does not bias estimates but reduces their precision. 
Fourth, the number of interesting joint tests increases with the number of 
slopes. All four remain valid when we add additional explanatory variables.
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1.	 Equations (14.11), (14.1), and (14.2), section 14.2: The general form 
of the multivariate population relationship is

y xi l li

l

k

i= + +
=
∑α β ε

1

.

	 The corresponding sample relationship is

y a b x ei l li

l

k

i= + +
=
∑

1

.

	 The predicted value of yi is

ˆ .y a b xi l li

l

k

= +
=
∑

1

2.	 Equations (14.3) and (14.4), section 14.2: When we minimize the 
sum of squared errors in the multivariate regression, the errors sum to 
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3.	 Equations (14.5) and (14.8), section 14.2: The intercept in the 
multivariate regression is

a y b xl l

l

k

= −
=
∑

1

.

	 The slopes are

b

e e

p

x x x x x i x x x x xp p p k p p p k

=

−
− + − +( ), ,1 1 1 1 1 1… … … …(( ) ( )( ) −

− + − +
e e

y x x x x i y x x x xp p k p p k, ,1 1 1 1 1 1… … … …(( )
=

( )

( )
−

∑

− + −

i

n

x x x x x i x x x
e e

p p p k p p

1

1 1 1 1 1, ,… … … xx x
i

n

p k+( )
=

( )∑
1

2

1
…

.

jawalsh
Rectangle



More Than Two Explanatory Variables    543

S
N
L

543

4.	 Equations (14.9) and (14.17), section 14.2: R 2 is
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	 The adjusted R 2 is
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5.	 Section 14.2: Regression is not limited to two explanatory variables. 
However, the number of observations must exceed the number of esti-
mators, and each explanatory variable must have some part that is not 
related to all of the other explanatory variables in order to calculate 
meaningful regression estimators.

6.	 Equations (14.12) and (14.14), section 14.2: If the regression is 
specified correctly, estimators are unbiased:
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	 If the regression omits explanatory variables, estimators are biased:
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7.	 Equations (14.16), (14.19), and (14.20), section 14.3: The estimator 
of σ 2 is
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	 With this estimator, the standardized value of bp is a t random variable 
with n − k − 1 degrees of freedom:
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	 If n is sufficiently large, this can be approximated as a standard nor-
mal random variable. If the sample regression is correctly specified, bp 
is the best linear unbiased (BLU) estimator of βp.

8.	 Equations (14.21) and (14.22), section 14.3: The general form of the 
test between an unrestricted alternative hypothesis and a null hypoth-
esis subject to j restrictions is
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	 For the null hypothesis that all coefficients are equal to zero, this  
reduces to

R

R

n k

k
F k n kU

U

2

21

1
1

−
− − − −( )~ , .

9.	 Equation (14.26), section 14.3: The Chow test for differences in 
regimes is
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10.	 Section 14.6: If omitted explanatory variables are fixed for each entity 
in the sample, multiple observations on each entity may allow us to 
use panel data estimation techniques. These techniques can purge the 
effects of unobserved heterogeneity and yield unbiased estimators for 
the effects of included explanatory variables.

14.1  Introduction

We’ve had more than two explanatory variables in a regression since the 
beginning of chapter 1. However, we haven’t been ready to understand how 
we can do this until now. This chapter formally closes the exploratory loop 
upon which we embarked when we began this book. Most of what we need to 
accomplish this is in the three preceding chapters. Most of what we do here is 
to assert that the addition of explanatory variables beyond the second changes 
very little of substance.

For the most part, we justify these assertions with appeals to proofs in 
earlier chapters and to the intuition that we have developed since we began. 
We don’t provide the kinds of proofs to which we have become accustomed 
because the framework of ordinary algebra is too clumsy when the number 
of explanatory variables increases. For those of us who are interested in those 
proofs, they’re available in Johnston and DiNardo (1997) and Greene (2003). 
Those of us who are curious about why matrix algebra seems to be such a 
big deal ought to check these references to see the extraordinary economy of 
notation and generality of result that is possible with this tool.

14.2  Can We Have More Than Two Explanatory Variables?

Apart from illustrating the interactive specification, equation (13.48) is the 
fifth time in this book that we’ve gotten ahead of ourselves by writing a popu-
lation equation that we don’t yet know how to estimate. Two times don’t count 
for the present purpose: In chapters 8 and 9, we needed two explanatory vari-
ables in the auxiliary regression for White’s heteroscedasticity test and in the 
generalized least squares (GLS) estimation. However, we figured out how to 
calculate these regressions in chapter 11.

Three instances are still unresolved. The last, of course, is equation (13.48). 
The first is the entire first chapter. There, we see regressions with between 
three and nine explanatory variables. The second instance is equation (12.44), 
which tells us that the White heteroscedasticity test for the regression with two 
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