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15.0  What We Need to Know When We Finish This Chapter

1.	 Section 15.1: The values for discrete dependent variables represent 
categories rather than quantities. We try to predict the probability that 
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the outcome will be in a particular category, rather than the quantity 
of the outcome.

2.	 Section 15.4: The underlying continuous variable that we would like 
to observe is yi

* . The categorical representation of this variable that 
we can actually measure is yi. yi serves as the equivalent of the 
“dependent variable” in our analysis here.

3.	 Equation (15.20), section 15.4: The true probability of observing the 
sample is
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	 This probability depends on the population parameters β  ∕σ and α  ∕σ.

4.	 Equation (15.21), section 15.4: Our objective is to choose, based 
on the sample, an estimator b of β  ∕σ and an estimator a of α  ∕σ. With 
these choices, the likelihood is our estimate of the true probability of 
observing the sample:
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5.	 Section 15.4: Estimator values that maximize the likelihood function, 
such as b and a here, are maximum likelihood (ML) estimators. We 
obtain them through maximum likelihood estimation. When yi is cat-
egorical and εi  ∕σ is a standard normal random variable, the maximum 
likelihood procedure is known as probit estimation.

6.	 Section 15.5: In practice, we maximize the log of the likelihood func-
tion rather than the likelihood function itself. The derivatives of the 
log-likelihood function are usually complicated nonlinear functions of 
the estimators, so they can’t be solved explicitly. Instead, we use an  
iterative procedure in which we choose a sequence of estimator val-
ues. This sequence systematically increases the value of the log- 
likelihood function until it converges to its maximum. The estimator 
values that accomplish this are our ML estimates.

7.	 Equation (15.37), section 15.6: The effect of a change in xi on the 
probability of observing the outcome of interest depends on the initial 
value of xi. For purposes of comparability, we usually calculate this 
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effect beginning at the average value of xi, x :
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	 The effects of a change in xi on this probability beginning from a differ-
ent initial value will be in the same direction but of different magnitude.

8.	 Section 15.6: ML estimators are consistent. In addition, they are best 
consistent, meaning that they have the smallest variances among all 
consistent estimators. Their distribution is asymptotically normal, 
which means we can make confidence intervals and hypothesis tests 
with them as we did in chapter 7.

9.	 Section 15.7: The unobserved dependent variable yi
* is often taken 

to represent a continuous latent propensity to engage in the activity 
under examination. The observed variable yi is the expression of that 
propensity through the choice of whether or not to engage. Under 
this interpretation, probit analysis is applicable to many dependent 
variables that do not, at first, appear to have underlying continuous 
representations.

10.	 Section 15.8: Selection problems arise when the value of the dis-
turbance term helps to determine whether the outcome is observed. 
When this happens, bias can occur because the disturbance may be 
correlated with the explanatory variables for those observations that 
can be included in the sample. A sample selection model, which esti-
mates a probit equation predicting inclusion in the sample simultane-
ously with the regression of interest, may mitigate these biases. How-
ever, the probit must contain an effective explanatory variable that 
does not belong in the regression.

11.	 Section 15.9: When we take εi  ∕σ as a logistic random variable rather 
than a standard normal random variable, the estimation procedure 
of sections 15.4 and 15.5 is called logit estimation. Ordinary least 
squares regression with the categorical yi as the dependent variable is 
called the linear probability model but is generally not a good way to 
investigate the determinants of yi.

15.1  Introduction

Up until this point, our objective has been to understand how one or more 
explanatory variables contribute to the value of a dependent variable. By 
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